.
Herr Dr. Hirschhausen informiert. Verschweigt aber einen relevanten „Rest“
Von Sigrid Petersen
Am 8.1 habe ich zufällig dem Dr. Hirschhausen bei „Wissen vor acht – Erde“[1] zuhören dürfen. Thema war der „Nirwana-Fehlschluss“, dem man unterliegt, wenn eine perfekte Lösung erwartet wird wo es keine perfekte Lösung gibt und die nicht perfekte Lösung deswegen abgelehnt wird.
Hier am Beispiel Windrad. In dem Windrad seien ca. 7000 t Material, vornehmlich Beton und Stahl, verbaut. Nun wird das Windrad mit 15 GWh Jahresproduktion dem Kohlekraftwerk mit 15 GWh Jahresproduktion gegenüber gestellt. Am Ende steht der Schluss: Für das Windrad muss für seine Laufzeit von 20 Jahren nur einmal der Materialverbrauch für die Errichtung angesetzt werden, für das Kohlekraftwerk jedoch über 20 Jahre der jährliche Kohleverbrauch. Also, so das Fazit, seien die Materialansätze für das Windrad gegenüber Strom aus Kohle doch am Ende verschwindend gering.
Stimmt. Diese Rechnung ist ganz richtig! Wenn man sie denn nicht zu Ende denkt.
Nur hat er, Dr. Hirschhausen, seines Zeichens Mediziner und nicht Energie“experte“, unterschlagen, dass ein Windrad (an Land) im Jahr nur 1.750 Stunden Strom liefert. Weiß er das vielleicht gar nicht?
Der Materialeinsatz für die Errichtung des Kohlekraftwerkes käme eigentlich noch hinzu. Hierauf verzichtet Herr Hirschhausen allerdings, vermutlich, weil sein Ergebnis ihm überzeugend genug erscheint. Spielt auch keine Rolle, da als Backup ein Kohle- oder Gaskraftwerk errichtet werden muss.
Die restlichen 7.010 Stunden muss also ein anderer Stromlieferant herangezogen werden. Das sind immerhin 80% des Jahres.
Herr Hirschhausen, dann möchte ich Sie hier einmal ein bisschen aufklären: bleiben wir doch beim Kohlekraftwerk. Nehmen wir dieses als Backup. Dieses muss nun in den 80% der verbleibenden Zeit den Strom liefern, den das Windrad nicht liefern kann.
Das Ergebnis sieht am Ende folgendermaßen aus: insgesamt werden dann in 20 Jahren weniger als 18% „Material“ (20% Kohle) eingespart und weil es ja immer um die CO2-Einsparung geht, diese Einsparung beträgt dann auch nur 20%. Ihrer inkorrekten Berechnung mit ca. 82% „Materialeinsparung“ (implizit soll man auch von 82% CO2-Einsparung ausgehen) stehen also realistische 20% Einsparung an Material und CO2 gegenüber.